Closing tonight (11pm): $\quad 10.1$
Closing Wed: 2.1
Closing Fri: $\quad 2.2$
Closing next Mon (no class): 2.3
Warning: Big assignments, see hints in newsletter and use the MSC!

Entry Task:
Draw quick rough graphs of

1. $f_{1}(x)=\ln (x)$
2. $f_{2}(x)=\sin (x)$
3. $f_{3}(x)=|x|+1$
4. $f_{4}(x)=\tan ^{-1}(x)$
5. $f_{5}(x)=\frac{1}{x^{2}}$
6. $g(x)=\frac{x^{2}-4}{x-2}$
7. $h(x)= \begin{cases}x^{2} & , \text { if } x \neq 0 ; \\ 3 & , \text { if } x=0 .\end{cases}$

2.2 Limits

When we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

we say "the limit of $f(x)$, as x approaches a, is L ". and we mean
as x takes on values closer and closer to a, $y=f(x)$ takes on values closer and closer to L.
This notation gives us a way to discuss what is happen "near" a value $x=a$ (but not at the value).

One-sided limits

When we write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

we say "the limit of $f(x)$, as x approaches a from the left, is L ". and we mean
as x takes on values closer to and from the left of a, $y=f(x)$ takes on values closer and closer to L .

Similarly,

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

we say "the limit of $f(x)$, as x approaches a from the right, is L ".

Note:

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if both }\left\{\begin{array}{l}
\lim _{x \rightarrow a^{-}} f(x)=L \\
\lim _{x \rightarrow a^{+}} f(x)=L
\end{array}\right.
$$

2.3 Limit Laws and Strategies

Some Basic Limit Laws:

1. $\lim _{x \rightarrow a} c=c$
2. $\lim _{x \rightarrow a} x=a$
3. $\lim _{x \rightarrow a}[f(x)+g(x)]$

$$
=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
$$

4. $\lim _{x \rightarrow a}[f(x) g(x)]$

$$
=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)
$$

5. If $\lim _{x \rightarrow \boldsymbol{a}} \boldsymbol{g}(\boldsymbol{x}) \neq \mathbf{0}$, then
$\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

Examples:

1. $\lim _{x \rightarrow-7} 10=10$
2. $\lim _{x \rightarrow 14} x=14$
3. $\lim _{x \rightarrow-2}[x+6]=\lim _{x \rightarrow-2} x+\lim _{x \rightarrow-2} 6$
4. $\lim _{x \rightarrow 5}\left[2 x^{2}\right]=\lim _{x \rightarrow 5} 2 \lim _{x \rightarrow 5} x \lim _{x \rightarrow 5} x$
5. $\lim _{x \rightarrow 4}\left[\frac{x+2}{x^{2}}\right]=\frac{\lim _{x \rightarrow 4}(x+2)}{\lim _{x \rightarrow 4} x^{2}}$

Limit Flow Chart for

$$
\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]
$$

1. Try plugging in the value. If denominator $\neq 0$, done!
2. If denom $=\mathbf{0} \&$ numerator $\neq 0$, the answer is $-\infty,+\infty$ or DNE. Examine the sign (pos/neg) of the output from each side.
3. If denom = 0 \& numerator = 0, Use algebraic methods to simplify and cancel until one of them is not zero.

For the den $=0$, num $=0$ case, here is a summary of some algebra to try:

Strategy 1: Factor/Cancel
Strategy 2: Simplify Fractions Strategy 3: Expand/Simplify Strategy 4: Multiply by Conjugate Strategy 5: Change Variable Strategy 6: Compare to other functions (Squeeze Thm)

